

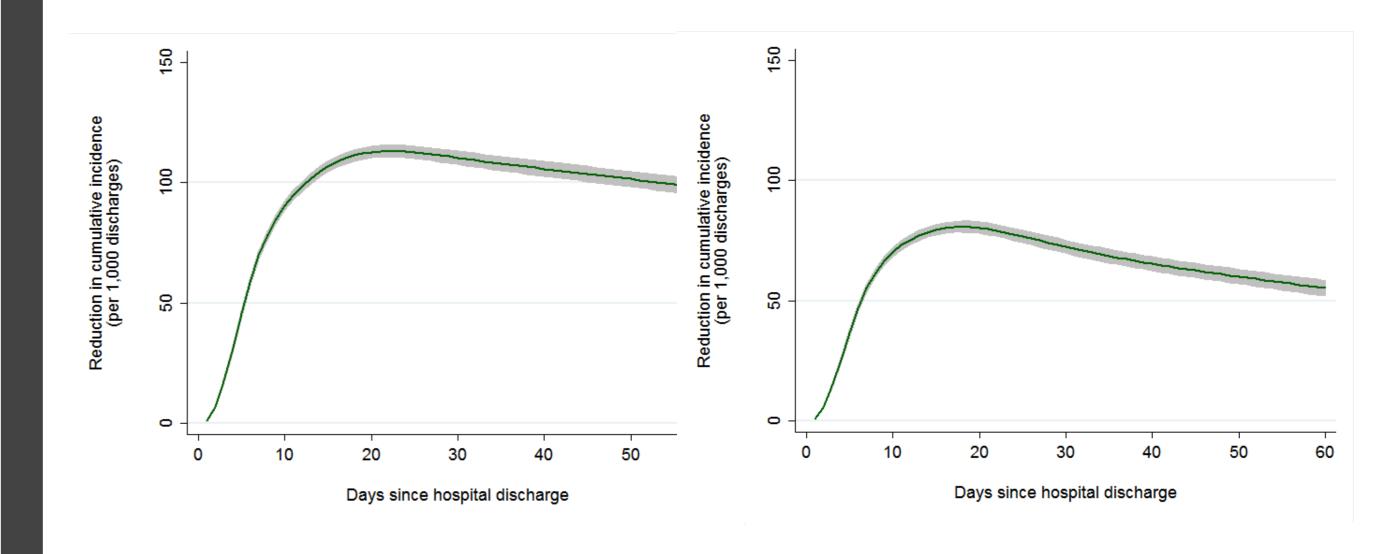
Optimal delivery of outpatient follow-up to reduce readmission after hospital discharge

An analysis using time-specific propensity scores

Bruno D. Riverin^{1,2}, Erin C. Strumpf^{1,3}, Ashley I. Naimi⁴, Patricia Li^{1,2} ¹Department of Epidemiology, Biostatistics & Occupational Health, McGill University; ²Department of Economics, McGill University; ⁴Department of Epidemiology, University of Pittsburgh Graduate School of Public Health

Background

- Hospital readmissions have been of wide policy interest, as quality measure of hospital care or as marker of poor integration of the health care delivery system
- A portion of hospital readmission may be preventable, which indicates an opportunity for containing cost AND for improving the quality of patient care


Time-Specific Propensity Score (PS)

Failing to account for changing temporal patterns of post-discharge follow-up may introduce bias:

- Probability of receiving post-discharge follow-up changes over time
- Patients receiving early or late follow-up may differ on health status

Results (cont'd)

Figure 3. Primary care physician Figure 4. Medical specialist

• Outpatient follow-up after discharge has been promoted as a KEY INTERVENTION POINT in medical care

Methodologically rigorous large-scale studies are needed to inform the development of policies and clinical guidelines for the optimal delivery of outpatient follow-up post hospital discharge

Objectives

- 1) To estimate the effect of the precise timing of follow-up care within 30 days on readmission in the 60 days following discharge among hospitalized elderly or chronically ill patients.
- 2) To explore this effect by type of provider (primary care physician or medical specialist) and patient morbidity level

Study Design

- Population-based claims database from the Régie de l'Assurance Maladie du Québec
- Elderly (\geq 70+) or chronically ill patients registered by a primary care physician

Patients who died or being readmitted early after discharge may differ in their propensity to have previously received follow-up

Results

Table 1. Patient characteristics at index admission

N = 620,656	Proportion (%)	
	Follow-up (N = 395,014)	No follow-up (N = 225,642)
Female	51.2	55.4
Age category		
18 - 34	0.6	0.7
35 - 49	3.5	2.9
50 - 64	16.1	12.5
65 – 79	49.4	44.6
≥ 80	30.4	39.3
Material deprivation (Q, qui	ntile)	
Q1	14.0	12.3
Q2	16.6	15.5
Q3	19.9	19.1
Q4	21.5	21.4
Q5	21.7	24.0
Geographical region		
Urban/academic	34.2	32.9
Suburban	40.4	37.0
Intermediate	20.3	22.5
Rural	4.9	7.1
Length of hospital stay (day	/S)	
0-2	25.0	21.4
3-6	33.1	31.4
7 – 13	27.3	28.3
14 – 20	9.5	11.3
21 – 30	5.1	7.6
No. of previous admissions	;	
0	32.8	31.0
1	24.3	23.5
2	15.3	15.1
≥ 3	27.6	30.5
Morbidity level		
Moderate	16.3	18.5
High	28.2	27.8

Main Findings

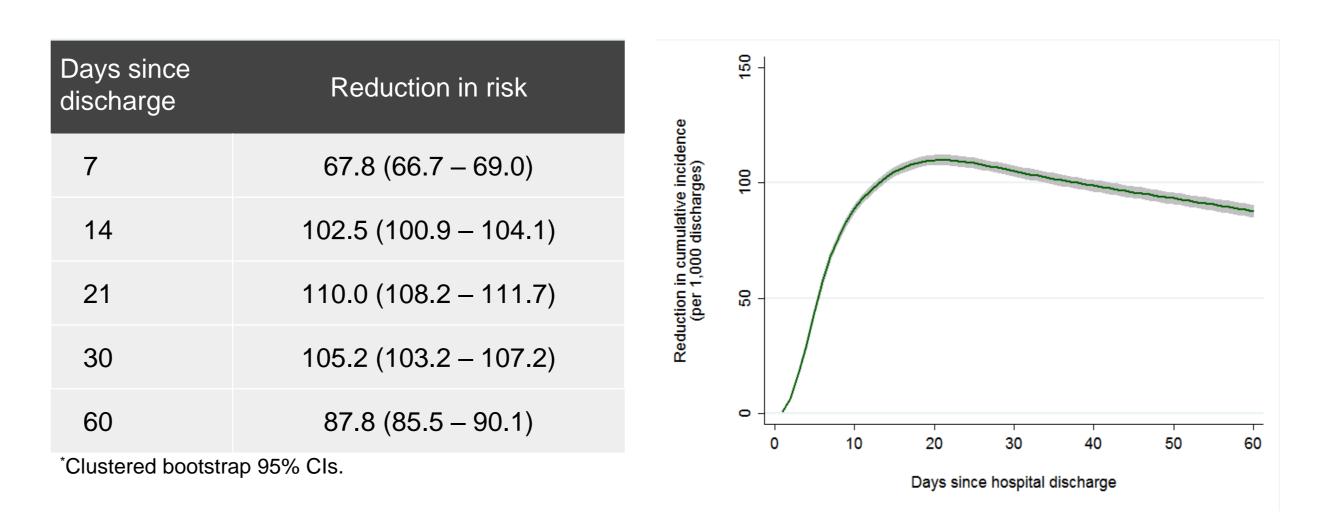
- 30-day risk of readmission reduced by 10.5%-point in patients who received post-discharge follow-up
- 30-day HR = 0.54 (95% cluster bootstrap CI: 0.53 0.56)
- Largest risk reduction achieved by follow-up within 21 days of post-discharge
- Largest risk reduction for patients with very high morbidity, timeliness especially important for them
- Post-discharge follow-up by a primary care physician contributed more towards reducing the risk of readmission than follow-up by a medical specialist

Sensitivity Analysis

- 620,656 index hospital admissions for any cause between 2002-2009
- Physician billing data is extracted on the day of the index admission and on any medical services (outpatient or inpatient) in the 60 days following discharge
- Exclusions: long-term care facilities; transfer to another facility; same day readmissions; mental health, pregnancy/child birth and pediatric admissions; admissions with a stay \geq 30 days; admissions for Northern Quebec
- Control variables: patient covariates (demographics, health status and health utilization), enrolling primary care physician covariates (demographics and practice type), year and hospital fixed-effects and relevant two-way interactions and time-dependent effects

Measures

Outcome:
Censoring:
Competing risk
Exposure:
Heterogeneity:


- Time (in days) to a hospital readmission After 60 days following hospital discharge Death
- Outpatient physician follow-up visit
 - 1. Timing (w/in 30 days) of outpatient follow-up
 - 2. Type of physician (primary care or specialist)
 - 3. Patient morbidity level

Reduction in the cumulative incidence of readmission attributable to outpatient follow-up after discharge

(per 1,000 discharges; 95% confidence intervals/bands)

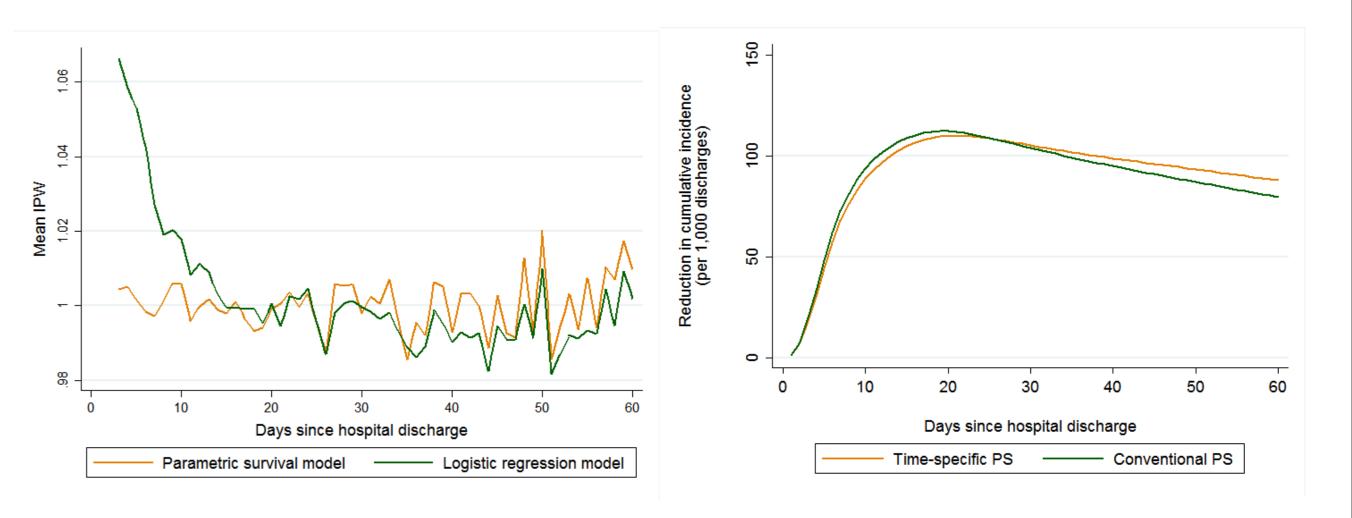

Table 2. Any physician

Figure 1. Any physician

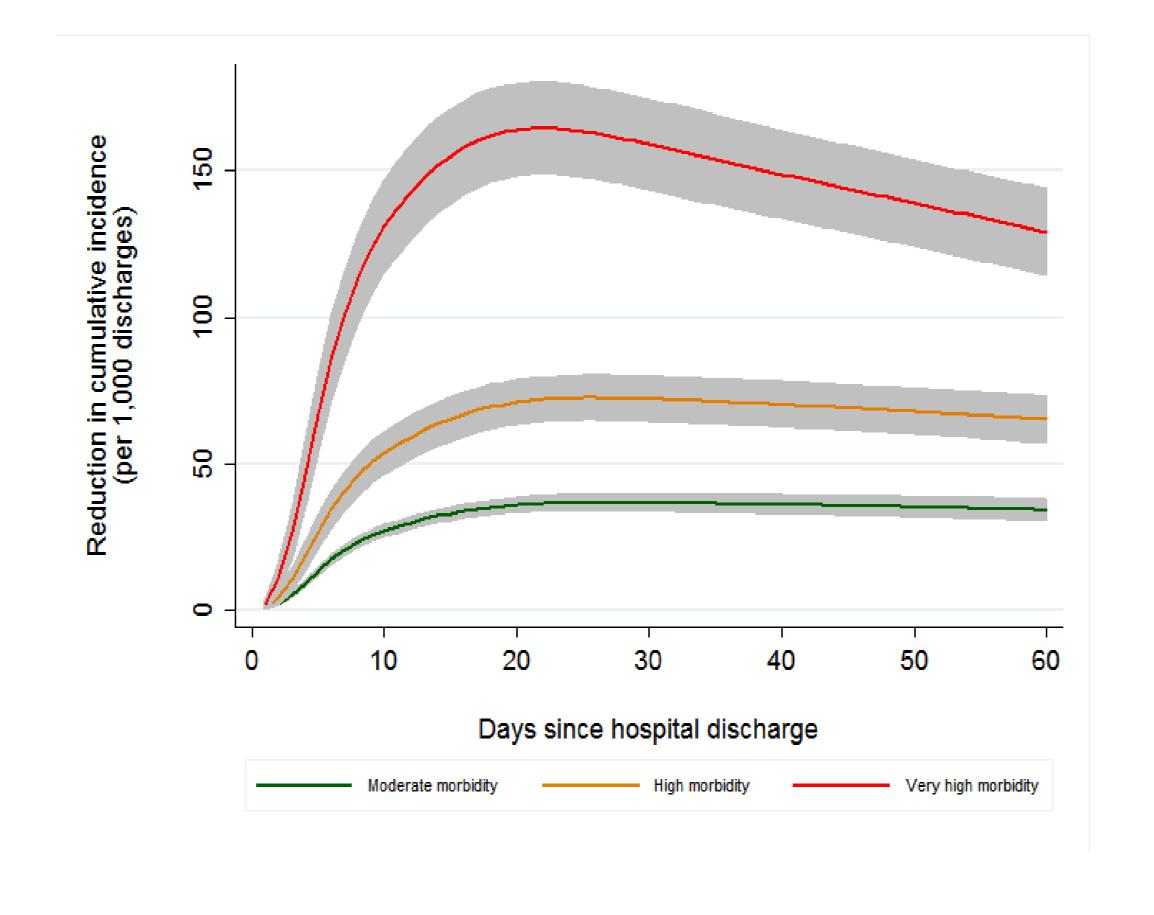
Comparison of IPW diagnostics and main results obtained via timespecific PS approach or conventional approach (logistic regression)

Figure 6. Comparison of main results **Figure 5. Mean IPW (diagnostic)**

Conclusions

• Post-discharge outpatient follow-up yields large reductions in the risk of readmission, corresponding to approximately a 46% relative decrease in the rates of 30-

Exposure models (propensity score models):


- Flexible parametric survival model (Royston and Parmar, 2002)
- Baseline hazard function, continuous covariates and timedependent effects modeled using restricted cubic splines

Pr(*Exposure actually received*) Stabilized IPW = $\frac{1}{N}$ Pr(Exposure actually received |Covariates measured at index discharge)

Outcome models (MSM estimated by IPW):

- Flexible parametric survival model for competing risk (Hincliff and Lambert, 2013)
- Models cumulative incidence function and cause-specific hazard ratio

Figure 2. Any physician, by patient morbidity level

day readmission

• Future policies to reduce readmission should target timely post-discharge follow-up and emphasize follow-up in the primary care setting within the first 3 weeks of discharge, and particularly for high-morbidity patients

Acknowledgements

We thank Julie Fiset-Laniel for her enormous contribution in reviewing and coordinating this work, and Mamadou Diop for his assistance with data management. Bruno Riverin is supported by a FRQ-S – SUPPORT Doctoral Award. The dissemination of this research was made possible by a SUPPORT Travel Award, by a GREAT Travel Award and by a CIHR-ICS Travel Award. Contact: <u>bruno.riverin@mail.mcgill.ca</u>

Québec 🛣 🛣

